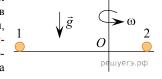
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Физической величиной является:
- 1) конденсация
- сила
- 3) вольтметр
- 4) градус
- 5) килограмм
- 2. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s = 20 км автомобиль проехал за промежуток времени Δt , равный:

1) 13 мин

- 5) 24 мин
- 3. Тонкий стержень с закрепленными на его концах небольшими бусинками 1 и 2 равномерно вращается в горизонтальной плоскости вокруг вертикальной оси, проходящей через точку O (см. рис.). Если длина стержня l = 1,0 м, а модули линейной скорости первой и второй бусинок отличаются в k = 1,5 раза, то первая бусинка находится от оси врашения на расстоянии r_1 , равном:

- 1) 0.15 м
- 2) 0,23 м
- 3) 0,30 м
- 4) 0,36 m
- 5) 0,60 м

4. На материальную точку массой m = 0.50 кг действуют две силы, модули которых $F_1 = 4,0 \ {\rm H}$ и $F_2 = 3,0 \ {\rm H}$, направленные под углом $\alpha = 90^{\circ}$ друг к другу. Модуль ускорения а этой точки равен:

- 1) 2,0 m/c^2 2) 5,0 m/c^2 3) 8,5 m/c^2 4) 10 m/c^2 5) 14 m/c^2

- **5.** К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

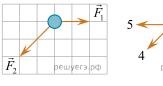


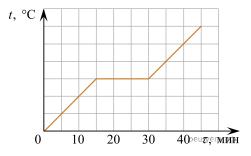
Рис 1

1) 1

Рис 2

2) 2

3)3

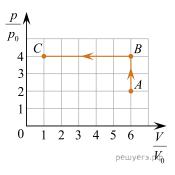

5) 5

6. Шар объемом $V = 14.0 \text{ дм}^3$, имеющий внутреннюю полость объёмом $V_0 = 13.0 \text{ дм}^3$, плавает в воде $\rho_1 = 1.0 \cdot 10^3 \text{ кг/м}^3$, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ра вещества, из которого изготовлен шар, равна:

Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

1)
$$2.5 \cdot 10^3 \text{ kg/m}^3$$
 2) $4.0 \cdot 10^3 \text{ kg/m}^3$ 3) $5.5 \cdot 10^3 \text{ kg/m}^3$
4) $7.0 \cdot 10^3 \text{ kg/m}^3$ 5) $8.5 \cdot 10^3 \text{ kg/m}^3$

7. В момент времени $\tau_0 = 0$ мин жидкое вещество начали нагревать при постоянном давлении, ежесекундно сообщая веществу одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Две трети массы вещества испарилось к моменту времени τ_1 , равному:

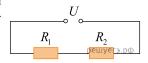


- 1) 5 мин
- 2) 10 мин
- 3) 20 мин
- 4) 25 мин
- 5) 45 MUH

8. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от $V_1 = 66$ л до $V_1 = 57$ л. Если начальная температура газа $t_1 = 57$ °C, то конечная температура t_2 газа равна:

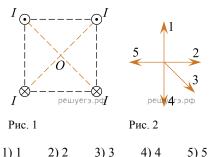
- 1) 12°C
- 2) 22°C
- 3) 32°C
- 4) 42°C
 - 5) 52°C

9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:


1)
$$U_C > U_B > U_A$$
 2) $U_B > U_A > U_C$ 3) $U_A > U_B > U_C$
4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$

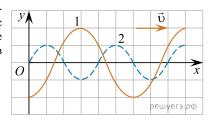
- 10. Сила тока в солнечной батарее измеряется в:
 - ваттах
- вольтах
 - 3) амперах 5) электрон-вольтах
- 4) ватт-часах

11. Электроёмкость плоского воздушного конденсатора $C_1 = 0.6$ нФ. Если пространство между обкладками конденсатора полностью заполнить бумагой, диэлектрическая проницаемость которого $\varepsilon = 3$, то электроёмкость C_2 конденсатора будет равна:


- 1) 0.1 нФ
- 2) 0.2 нФ
- 3) 0.3 нФ
- 4) 1.2 нФ
- 5) 1.8 нФ

12. На рисунке изображен участок электрической цепи, напряжение на котором U. Если сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 $(R_2 = 2R_1)$, то напряжение U_1 на резисторе R_1 равно:

- 1) $\frac{3}{4}U$ 2) $\frac{2}{3}U$ 3) $\frac{1}{2}U$ 4) $\frac{1}{3}U$ 5) $\frac{1}{4}U$


13. Четыре длинных прямолинейных проводника, сила тока в которых одинакова, расположены в воздухе параллельно друг другу так, что центры их поперечных сечений находятся в вершинах квадрата (см. рис. 1). Направление вектора индукции \vec{B} результирующего магнитного поля, созданного этими токами в точке O, на рисунке 2 обозначено цифрой:

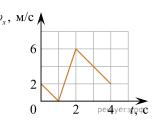
14. Если плоская поверхность площадью $S = 0.030 \text{ м}^2$ расположена перпендикулярно линиям индукции однородного магнитного поля, модуль индукции которого B = $0.50~{\rm Tr}$, то модуль магнитного потока Φ через эту поверхность равен:

- 1) 2 мВб
- 2) 4 мВб
- 3) 6 мВб
- 4) 10 мВб
- 5) 15 мВб

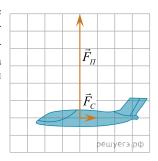
15. На рисунке представлены две поперечные волны 1 и 2, распространяющиеся с одинаковой скоростью вдоль оси Ох. Выберите ответ с правильным соотношением и периодов T_1 , T_2 этих волн, и их амплитуд A_1 , A_2 :

1) $T_1 > T_2, A_1 > A_2$. 2) $T_1 > T_2, A_1 = A_2$. 3) $T_1 < T_2, A_1 > A_2$. 4) $T_1 < T_2, A_1 = A_2$. 5) $T_1 = T_2, A_1 < A_2$.

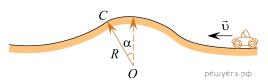
16. На дифракционную решётку нормально падает параллельный пучок монохроматического света с длиной волны $\lambda = 400$ нм. Если дифракционный максимум второго порядка наблюдается под углом $\theta = 30^{\circ}$ к нормали, то каждый миллиметр решетки содержит число N штрихов, равное:


- 1) 860
- 2) 750
- 3) 625
- 5) 410

4) 520


17. На экране, расположенном на одинаковом расстоянии от двух точечных источников когерентных световых волн, получена интерференционная картина (см. рис.). Если разность фаз волн в точке 1 равна нулю, то в точке 2 разность фаз волн равна:

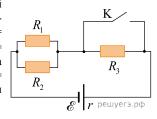
- 1) 0 2) 3
- $3) 2\pi$
- 4) 3π
- 5) 4π
- **18.** Если при захвате ядром изотопа лития ${}_{3}^{6}Li$ некоторой частицы образуются ядра изотопа гелия ${}_{2}^{4}He$ и изотопа водород ${}_{1}^{3}H$, то захваченной частицей является:
 - 1) протон
- 2) электрон
- 3) α-частица
- 4) позитрон 5) нейтрон
- 19. Материальная точка массой m=2,5 кг движется вдоль оси Ox. График зависимости проекции O_x , м/с скорости O_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.



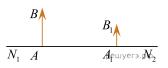
20. Самолет летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены подъемная сила $\vec{F}_{\rm II}$ и сила сопротивления воздуха $\vec{F}_{\rm C}$, действующие на самолет. Если сила тяги $\vec{F}_{\rm II}$ двигателей самолета направлена горизонтально, а модуль этой силы $\vec{F}_{\rm II}=70~{\rm kH}$, то масса m самолета равна ... ${\rm T}$.

21. Тело свободно падает без начальной скорости с высоты H=30 м. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $\Delta E_{\Pi}=3,0$ Дж, то его масса m равна ... г.

22. Автомобиль массой m=1 т движется по дороге со скоростью, модуль которой $\upsilon=30\frac{\rm M}{\rm c}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=0,34 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кH.



23. В закрытом сосуде вместимостью $V=1,50~{\rm cm}^3$ находится идеальный газ $\left(M=32,0\frac{\Gamma}{{\rm MOJIb}}\right)$, средняя квадратичная скорость поступательного движения молекул которого $\langle \upsilon_{{\rm KB}} \rangle = 300~\frac{{\rm M}}{{\rm c}}$. Если число молекул газа в сосуде $N=4,00\cdot 10^{20},$ то давление p газа в сосуде равно ... кПа. (Число Авогадро — $6,02\cdot 10^{23}$ моль $^{-1}$.)


24. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=12 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда второго шарика до соприкосновения $|q_2|=2$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=10 мкH, то модуль заряда $|q_1|$ первого шарика до соприкосновения равен ... нКл.

25. В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в три раза больше минимального, а максимальный объём газа — в два раза больше минимального. Коэффициент полезного действия η цикла равен ... %.

26. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1 = R_2 = 6,00$ Ом, $R_3 = 2,00$ Ом. По цепи в течение промежутка времени t = 30,0 с проходит электрический ток. Если ЭДС источника тока $\epsilon = 12,0$ В, а его внутреннее сопротивление r = 1,00 Ом, то работа $A_{\rm CT}$ сторонних сил источника тока при разомкнутом ключе К равна ... Дж.

- **27.** Аккумулятор, ЭДС которого $\varepsilon=1,6$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=39,1 г. Если на нагревание проводника расходуется $\alpha=75\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\Delta T_{\rm max}$ проводника за промежуток времени $\Delta t=1$ мин равно ... ${\bf K}$.
- **28.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=24 мТл. Если радиус окружности R=0,4 мм, то кинетическая энергия $W_{\rm k}$ электрона равна ... эВ.
- **29.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0=1,9\,$ В, а амплитудное значение силы тока в контуре $I_0=30\,$ мА. Если электроёмкость конденсатора $C=0,25\,$ мк Φ , то частота v колебаний в контуре равна ... к Γ ц.
- **30.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=38 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=400\,$ пКл) шарик массой $m=100\,$ мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами $E=100\,$ кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **31.** Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

32. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120$ 000 ядер радиоактивного изотопа золота $^{133}_{54}$ Хе. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5\,$ сут., то $\Delta N=90000$ ядер $^{133}_{54}$ Хе распадётся за промежуток времени Δt , равный ... сут.